
Lecture #2
Single Node Architecture

Instructor:
Dr. Ahmad El-Banna

Benha University
Faculty of Engineering at Shoubra

S
p
r

i
n

g
 2

0
1
5

ECE-508
Sensor Networks

©
 A

hm
ad

 E
l-B

an
na

Agenda

Sensor node architecture

Energy supply and consumption

Runtime environments for sensor nodes

Case study: TinyOS
2

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

3

Goals of the chapter

• Survey the main components of the composition of a node for
a wireless sensor network

• Controller, radio modem, sensors, batteries

• Understand energy consumption aspects for these
components

• Putting into perspective different operational modes and what
different energy/power consumption means for protocol design

• Operating system support for sensor nodes

• Some example nodes

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

SENSOR NODE ARCHITECTURE 4

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

5

Sensor node architecture
• Main components of a WSN node

• Controller

• Communication device(s)

• Sensors/actuators

• Memory

• Power supply

Memory

Controller
Sensor(s)/
actuator(s)

Communication
device

Power supply

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

6

Ad hoc node architecture

• Core: essentially the same

• But: Much more additional equipment

• Hard disk, display, keyboard, voice interface, camera, …

• Essentially: a laptop-class device

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

7

Controller
• Main options:

• Microcontroller – general purpose processor, optimized for
embedded applications, low power consumption

• DSPs – optimized for signal processing tasks, not suitable here

• FPGAs – may be good for testing

• ASICs – only when peak performance is needed, no flexibility

• Example microcontrollers

• Texas Instruments MSP430

• 16-bit RISC core, up to 4 MHz, versions with 2-10 kbytes RAM,
several DACs, RT clock, prices start at 0.49 US$

• Atmel ATMega

• 8-bit controller, larger memory than MSP430, slower

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Microcontrollers !

• A microcontroller (sometimes abbreviated µC, uC or

MCU) is a small computer on a single integrated circuit

containing a processor core, memory, and

programmable input/output peripherals.

• It can only perform simple/specific tasks.

• A microcontroller is often described as a ‘computer-on-a-

chip’.

8

©
 A

hm
ad

 E
l-B

an
na

Se

ns
or

s N
/w

, L
ec

#2
 , S

pr
in

g 2
01

5

http://upload.wikimedia.org/wikipedia/commons/c/c7/153056995_5ef8b01016_o.jpg

Microcomputer System and Microcontroller
based System

9

©
 A

hm
ad

 E
l-B

an
na

Se

ns
or

s N
/w

, L
ec

#2
 , S

pr
in

g 2
01

5

Microcontrollers..

• Microcontrollers are purchased ‘blank’ and then programmed
with a specific control program.

• Once programmed, the microcontroller is build into a product
to make the product more intelligent and easier to use.

• A designer will use a Microcontroller to:

• Gather input from various sensors

• Process this input into a set of actions

• Use the output mechanisms on the microcontroller to do
something useful.

10

©
 A

hm
ad

 E
l-B

an
na

Se

ns
or

s N
/w

, L
ec

#2
 , S

pr
in

g 2
01

5

Microcontroller Packaging and
Appearance

11

©
 A

hm
ad

 E
l-B

an
na

From left to right: PIC 12F508, PIC 16F84A, PIC
16C72, Motorola 68HC05B16, PIC 16F877,
Motorola 68000

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

Features Example: PIC 16F877

12

©
 A

hm
ad

 E
l-B

an
na

Key Features PIC16F877

MAX Operating Frequency 20MHz

FLASH Program Memory

(14-bit words)
8K

Data Memory (bytes) 368

EEPROM Data Memory (bytes) 256

I/O Ports

 RA0-5 (6)

RB0-7 (8)

RC0-7 (8)

RD0-7 (8)

RE0-2 (3)

Timers 3

CCP (Capture/Compare/PWM) 2

Serial Communications MSSP, USART

Parallel Communications PSP

10-bit Analog-to-Digital Module 8 Channels

Instruction Set 35 Instructions

Pins (DIP) 40 Pins

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

13

Communication device

• Which transmission medium?

• Electromagnetic at radio frequencies?

• Electromagnetic, light?

• Ultrasound?

• Radio transceivers transmit a bit- or byte stream as radio
wave

• Receive it, convert it back into bit-/byte stream

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

14

Transceiver characteristics
• Capabilities

• Interface: bit, byte, packet level?

• Supported frequency range?

• Typically, somewhere in 433 MHz –
2.4 GHz, ISM band

• Multiple channels?

• Data rates?

• Range?

• Energy characteristics

• Power consumption to send/receive
data?

• Time and energy consumption to
change between different states?

• Transmission power control?

• Power efficiency (which percentage
of consumed power is radiated?)

• Radio performance

• Modulation? (ASK, FSK, …?)

• Noise figure? NF = SNRI/SNRO

• Gain? (signal amplification)

• Receiver sensitivity? (minimum S
to achieve a given Eb/N0)

• Blocking performance (achieved
BER in presence of frequency-
offset interferer)

• Out of band emissions

• Carrier sensing & RSSI
characteristics

• Frequency stability (e.g., towards
temperature changes)

• Voltage range

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

15

Transceiver states

• Transceivers can be put into different operational states,
typically:
• Transmit

• Receive

• Idle – ready to receive, but not doing so
• Some functions in hardware can be switched off, reducing energy

consumption a little

• Sleep – significant parts of the transceiver are switched off
• Not able to immediately receive something

• Recovery time and startup energy to leave sleep state can be
significant

• Research issue: Wakeup receivers – can be woken via radio
when in sleep state (seeming contradiction!)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Homework: Summarize a paper related to Wakeup receivers!
 S15PG_SN_UrName_ASS02

16

Example radio transceivers
• Almost boundless variety available

• Some examples

• RFM TR1000 family

• 916 or 868 MHz

• 400 kHz bandwidth

• Up to 115,2 kbps

• On/off keying or ASK

• Dynamically tuneable output power

• Maximum power about 1.4 mW

• Low power consumption

• Chipcon CC1000

• Range 300 to 1000 MHz,
programmable in 250 Hz steps

• FSK modulation

• Provides RSSI

• Chipcon CC 2400

• Implements 802.15.4

• 2.4 GHz, DSSS modem

• 250 kbps

• Higher power consumption than
above transceivers

• Infineon TDA 525x family

• E.g., 5250: 868 MHz

• ASK or FSK modulation

• RSSI, highly efficient power
amplifier

• Intelligent power down, “self-
polling” mechanism

• Excellent blocking performance Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

17

Example radio transceivers for
ad hoc networks
• Ad hoc networks: Usually, higher data rates are required

• Typical: IEEE 802.11 b/g/a is considered

• Up to 54 MBit/s

• Relatively long distance (100s of meters possible, typical 10s of
meters at higher data rates)

• Works reasonably well (but certainly not perfect) in mobile
environments

• Problem: expensive equipment, quite power hungry

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

18

Wakeup receivers

• Major energy problem: RECEIVING

• Idling and being ready to receive consumes considerable amounts
of power

• When to switch on a receiver is not clear

• Contention-based MAC protocols: Receiver is always on

• TDMA-based MAC protocols: Synchronization overhead, inflexible

• Desirable: Receiver that can (only) check for incoming
messages

• When signal detected, wake up main receiver for actual reception

• Ideally: Wakeup receiver can already process simple addresses

• Not clear whether they can be actually built, however

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Computer Process Control System
• To implement process control, the computer must collect data and

transmit signals to the production process.
• Components required to implement the interface:

• Sensors to measure continuous and discrete process variables
• Actuators to drive continuous and discrete process parameters
• Devices for ADC and DAC
• I/O devices for discrete data

19

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Actuators

Computer/
Controller

Transformation Process

Sensors

DAC ADC

Input Devices Output Devices

Continuous and Discrete

Variables
Continuous and Discrete

Parameters

20

Sensors

• A sensor is a transducer that converts a physical stimulus
from one form into a more useful form to measure the
stimulus.

• Two basic categories:
1. Analog

2. Discrete
• Binary

• Digital (e.g., pulse counter)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Physical
Medium

Sensing
Element

Conditioning Target
Handling

Temperature Resistance Voltage Information

Stimulus (s) Signal (S)

Sensors..

• Main categories

• Any energy radiated? Passive vs. active sensors

• Sense of direction? Omidirectional?

• Passive, omnidirectional

• Examples: light, thermometer, microphones, hygrometer, …

• Passive, narrow-beam

• Example: Camera

• Active sensors

• Example: Radar

• Important parameter: Area of coverage

• Which region is adequately covered by a given sensor?

21

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=78
http://images.google.com/imgres?imgurl=http://nxtasy.org/wp-content/uploads/2006/08/pressure_sensor.gif&imgrefurl=http://nxtasy.org/2006/08/24/pneumatic-pressure-for-nxt/&usg=__I8sfbTT0k7KuFGVxEqo869Tz1y0=&h=305&w=377&sz=29&hl=en&start=3&um=1&tbnid=0KJwhisfi6oBkM:&tbnh=99&tbnw=122&prev=/images?q=pressure+sensor&hl=en&rls=com.microsoft:en-ie:IE-SearchBox&rlz=1I7GGLR_en&sa=N&um=1

Actuators

• Actuators are hardware devices that convert a controller
command signal into a change in a physical parameter

• The change is usually mechanical (e.g., position or velocity)

• An actuator is also a transducer because it changes one type
of physical quantity into some alternative form

• An actuator is usually activated by a low-level command
signal, so an amplifier may be required to provide sufficient
power to drive the actuator

22

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Signal Processing
& Amplification

Mechanism

Electric Hydraulic
Pneumatic

Final Actuation
Element

Actuator
Sensor

Logical

Signal

Types of Actuators

1. Electrical actuators

• Electric motors
• DC servomotors

• AC motors

• Stepper motors

• Solenoids

2. Hydraulic actuators

• Use hydraulic fluid to amplify the controller
command signal

3. Pneumatic actuators

• Use compressed air as the driving force

23

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

http://images.google.ie/imgres?imgurl=http://www.fwmurphy.co.uk/images/RP23xx_solenoid_medres.jpg&imgrefurl=http://www.fwmurphy.co.uk/products/engine_controls/engmot_rp2300.htm&usg=__UdBA_StSqZ4oIbijTPS3RMoLaVA=&h=607&w=800&sz=92&hl=en&start=5&tbnid=7loeepr6ovfJLM:&tbnh=109&tbnw=143&prev=/images?q=solenoid&gbv=2&hl=en

Analog-to-Digital Conversion
(ADC)
• Sampling – converts the continuous signal into a series of discrete

analog signals at periodic intervals

• Quantization – each discrete analog is converted into one of a
finite number of (previously defined) discrete amplitude levels

• Encoding – discrete amplitude levels are converted into digital
code

24

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Variable

Time

Analogue Signal

1001 1101 0101
Discrete

Variables

Hardware Devices in
Analog-to-Digital Conversion

25

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

Analog
Digital
Converter

Transformation Process

Sensors
 & Transducer

Other Signals

Continuous

Variable

Signal
Conditioner

Multiplexer

Digital
Computer

Amplifer

Features of an ADC

• Sampling rate – rate at which continuous analog signal is
polled e.g. 1000 samples/sec

• Quantization – divide analog signal into discrete levels
• where Nq = quantisation levels; and n is the number of bits.

• Resolution – depends on number of quantization levels

• where RADC is the resolution of the ADC; L is the full-scale range of
the ADC

• Conversion time – how long it takes to convert the sampled
signal to digital code

• Conversion method – means by which analog signal is
encoded into digital equivalent
• Example – Successive approximation method & Flash

26

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

n

qN 2

121 





n

q

ADC

L

N

L
R

Flash ADC

27

• The simultaneous, or flash,
method of A/D conversion
uses parallel comparators to
compare the linear input
signal with various reference
voltages developed by a
voltage divider.

• When the input voltage
exceeds the reference voltage
for a given comparator, a high
level is produced on that
comparator’s output.

 2n- 1 comparators are required for
conversion to an n-digit binary number.

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

DAC

• Convert digital values into continuous analogue signal

• Decoding digital value to an analogue value at discrete moments
in time based on value within register

Where E0 is output voltage; Eref is reference voltage; Bn is status of
successive bits in the binary register

28

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

  n

n

ref BBBEE
1

210 225.05.0


 

DAC Examples

29

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

• Scaling Adder as a four-digit DAC

• An R/2R ladder DAC

I0=+V/8R
I1=+V/4R
I2=+V/2R
I3=+V/R

Vout(D0)=-Rf I0

Vout(D1)=-Rf I1

Vout(D2)=-Rf I2

Vout(D3)=-Rf I3

ENERGY SUPPLY AND CONSUMPTION 30

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

31

Energy supply of
mobile/sensor nodes
• Goal: provide as much energy as possible at smallest

cost/volume/weight/recharge time/longevity
• In WSN, recharging may or may not be an option

• Options
• Primary batteries – not rechargeable

• Secondary batteries – rechargeable, only makes sense in combination
with some form of energy harvesting

• Requirements include
• Low self-discharge

• Long shelf live

• Capacity under load

• Efficient recharging at low current

• Good relaxation properties (seeming self-recharging)

• Voltage stability (to avoid DC-DC conversion)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

SS 05 Ad hoc & sensor networks - Ch 2: Single node architecture 32

Battery examples

• Energy per volume (Joule per cubic centimeter):

Primary batteries

Chemistry Zinc-air Lithium Alkaline

Energy (J/cm3) 3780 2880 1200

Secondary batteries

Chemistry Lithium NiMHd NiCd

Energy (J/cm3) 1080 860 650 Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

33

Energy Scavenging
• How to recharge a battery?

• A laptop: easy, plug into wall socket in the evening

• A sensor node? – Try to scavenge energy from environment

• Ambient energy sources

• Light ! solar cells – between 10 W/cm2 and 15 mW/cm2

• Temperature gradients – 80  W/cm2 @ 1 V from 5K difference

• Vibrations – between 0.1 and 10000  W/cm3

• Pressure variation (piezo-electric) – 330  W/cm2 from the heel of a
shoe

• Air/liquid flow (MEMS gas turbines)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

34

Energy scavenging – overview

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

35

Energy Consumption

• A “back of the envelope” estimation

• Number of instructions

• Energy per instruction: 1 nJ

• Small battery (“smart dust”): 1 J = 1 Ws

• Corresponds: 109 instructions!

• Lifetime

• Or: Require a single day operational lifetime = 24*60*60 =86400 s

• 1 Ws / 86400s ¼ 11.5 W as max. sustained power consumption!

• Not feasible!

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

36

Multiple power consumption
modes
• Way out: Do not run sensor node at full operation all the time

• If nothing to do, switch to power safe mode

• Question: When to throttle down? How to wake up again?

• Typical modes

• Controller: Active, idle, sleep

• Radio mode: Turn on/off transmitter/receiver, both

• Multiple modes possible, “deeper” sleep modes

• Strongly depends on hardware

• TI MSP 430, e.g.: four different sleep modes

• Atmel ATMega: six different modes

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

37

Some energy consumption
figures
• Microcontroller

• TI MSP 430 (@ 1 MHz, 3V):

• Fully operation 1.2 mW

• Deepest sleep mode 0.3 W – only woken up by external interrupts
(not even timer is running any more)

• Atmel ATMega

• Operational mode: 15 mW active, 6 mW idle

• Sleep mode: 75 W

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

38

Switching between modes

• Simplest idea: Greedily switch to lower mode whenever
possible

• Problem: Time and power consumption required to reach
higher modes not negligible

• Introduces overhead

• Switching only pays off if Esaved > Eoverhead

• Example:
Event-triggered
wake up from
sleep mode

• Scheduling problem
with uncertainty
(exercise)

Pactive

Psleep

time tevent t1

Esaved
Eoverhead

tdown tup

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

39

Alternative: Dynamic voltage scaling

• Switching modes complicated by uncertainty how long a sleep
time is available

• Alternative: Low supply voltage & clock

• Dynamic voltage scaling (DVS)

• Rationale:

• Power consumption P
depends on

• Clock frequency

• Square of supply voltage

• P / f V2

• Lower clock allows
lower supply voltage

• Easy to switch to higher clock

• But: execution takes longer

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

40

Memory power consumption

• Crucial part: FLASH memory

• Power for RAM almost negligible

• FLASH writing/erasing is expensive

• Example: FLASH on Mica motes

• Reading: ¼ 1.1 nAh per byte

• Writing: ¼ 83.3 nAh per byte

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

41

Transmitter power/energy
consumption for n bits
• Amplifier power: Pamp = amp + amp Ptx

• Ptx radiated power

• amp, amp constants depending on model

• Highest efficiency ( = Ptx / Pamp) at maximum output power

• In addition: transmitter electronics needs power PtxElec

• Time to transmit n bits: n / (R * R
code

)
• R nomial data rate, R

code
 coding rate

• To leave sleep mode
• Time Tstart, average power P

start

 ! E
tx

 = T
start

 P
start

 + n / (R * R
code

) (PtxElec + amp + amp Ptx)

• Simplification: Modulation not considered

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

42

Receiver power/energy
consumption for n bits
• Receiver also has startup costs

• Time Tstart, average power P
start

• Time for n bits is the same n / (R * R
code

)

• Receiver electronics needs PrxElec

• Plus: energy to decode n bits EdecBits

 ! Erx = T
start

 P
start

 + n / (R * R
code

) PrxElec + EdecBits (R)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

43

Some Transceiver Numbers

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

44

Comparison: GSM base station
power consumption
• Overview

• Details

• (just to put things
into perspective)

AC power

3802W

DC power

3200W

-48V

RF power

480W

PS

84%
TRXs ACE

Combining

TOC RF

120W

BTS

Central

equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX

2400W

CE

800W Total Heat

3682W

AC power

3802W

DC power

3200W

-48V

RF power

480W

PS

84%
TRXs ACE

Combining

TOC RF

120W

BTS

Central

equipm.

Heat 1920WHeat 602W Heat 360W

Heat 800W

TRX

2400W

CE

800W Total Heat

3682W

220V

AC Power

supply

3802W

-48V

3232W

Rack

cabling

-48V

3200W

85% 99%

300W

500W

Fans

cooling

Com-

mon

12 transceivers

60W

idle

85%
Converter

-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency

40W/140W=28%

PAs consume

dominant part of power

(12*140W)/2400W=70%

2400W

Combiner
DiplexerOverall efficiency

(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang

efficiency 75%

DTX activity

47%

220V

AC Power

supply

3802W

-48V

3232W

Rack

cabling

-48V

3200W

85% 99%

300W

500W

Fans

cooling

Com-

mon

12 transceivers

60W

idle

85%
Converter

-48V/+27V

9W
Bias

110W
PA

119W

140W

200W

(No active cooling)

40W

Usable PA efficiency

40W/140W=28%

PAs consume

dominant part of power

(12*140W)/2400W=70%

2400W

Combiner
DiplexerOverall efficiency

(12*10W)/3802W=3.1%

10W

TOC

15W

Erlang

efficiency 75%

DTX activity

47%

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

45

Controlling Transceivers

• Similar to controller, low duty cycle is necessary
• Easy to do for transmitter – similar problem to controller: when is

it worthwhile to switch off

• Difficult for receiver: Not only time when to wake up not known,
it also depends on remote partners

 ! Dependence between MAC protocols and power consumption is
strong!

• Only limited applicability of techniques analogue to DVS
• Dynamic Modulation Scaling (DSM): Switch to modulation best

suited to communication – depends on channel gain

• Dynamic Coding Scaling – vary coding rate according to channel
gain

• Combinations

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

46

Computation vs.
communication energy cost
• Tradeoff?

• Directly comparing computation/communication energy cost not
possible

• But: put them into perspective!

• Energy ratio of “sending one bit” vs. “computing one instruction”:
Anything between 220 and 2900 in the literature

• To communicate (send & receive) one kilobyte
= computing three million instructions!

• Hence: try to compute instead of communicate whenever
possible

• Key technique in WSN – in-network processing!

• Exploit compression schemes, intelligent coding schemes, …

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

RUNTIME ENVIRONMENTS FOR
SENSOR NODES

47

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

48

Operating system challenges in
WSN
• Usual operating system goals

• Make access to device resources abstract (virtualization)

• Protect resources from concurrent access

• Usual means
• Protected operation modes of the CPU – hardware access only in

these modes

• Process with separate address spaces

• Support by a memory management unit

• Problem: These are not available in microcontrollers
• No separate protection modes, no memory management unit

• Would make devices more expensive, more power-hungry

 ! ???

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

49

Operating system challenges in
WSN
• Possible options

• Try to implement “as close to an operating system” on WSN
nodes
• In particular, try to provide a known programming interface

• Namely: support for processes!

• Sacrifice protection of different processes from each other

 ! Possible, but relatively high overhead

• Do (more or less) away with operating system
• After all, there is only a single “application” running on a WSN node

• No need to protect malicious software parts from each other

• Direct hardware control by application might improve efficiency

• Currently popular verdict: no OS, just a simple run-time
environment
• Enough to abstract away hardware access details

• Biggest impact: Unusual programming model

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

50

Main issue: How to support
concurrency
• Simplest option: No concurrency,

sequential processing of tasks

• Not satisfactory: Risk of missing data (e.g.,
from transceiver) when processing data,
etc.

 ! Interrupts/asynchronous operation has to
be supported

• Why concurrency is needed

• Sensor node’s CPU has to service the radio
modem, the actual sensors, perform
computation for application, execute
communication protocol software, etc.

Poll sensor

Process
sensor
data

Poll transceiver

Process received
packet

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

51

Traditional concurrency:
Processes
• Traditional OS: processes/threads

• Based on interrupts, context
switching

• But: not available – memory
overhead, execution overhead

• But: concurrency mismatch
• One process per protocol entails

too many context switches

• Many tasks in WSN small with
respect to context switching
overhead

• And: protection between
processes not needed in WSN
• Only one application anyway

Handle sensor
process

Handle packet
process

OS-mediated
process switching

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

52

Event-based concurrency
• Alternative: Switch to event-based programming model

• Perform regular processing or be idle

• React to events when they happen immediately

• Basically: interrupt handler

• Problem: must not remain in interrupt handler too long

• Danger of loosing events

• Only save data, post information that event has happened, then return

 ! Run-to-completion principle

• Two contexts: one for handlers, one for regular execution

I d l e / R e g u l a r
p r o c e s s i n g

R a d i o
e v e n t

R a d i o e v e n t h a n d l e r

S e n s o r
e v e n t

S e n s o r e v e n t
h a n d l e r

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

53

Components instead of
processes
• Need an abstraction to group functionality

• Replacing “processes” for this purpose

• E.g.: individual functions of a networking protocol

• One option: Components

• Here: In the sense of TinyOS

• Typically fulfill only a single, well-defined function

• Main difference to processes:

• Component does not have an execution

• Components access same address space, no protection against each
other

• NOT to be confused with component-based programming!

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

54

API to an event-based protocol
stack
• Usual networking API: sockets

• Issue: blocking calls to receive data

• Ill-matched to event-based OS

• Also: networking semantics in WSNs not necessarily well matched
to/by socket semantics

• API is therefore also event-based

• E.g.: Tell some component that some other component wants to
be informed if and when data has arrived

• Component will be posted an event once this condition is met

• Details: see TinyOS example discussion below Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

55

Dynamic power management

• Exploiting multiple operation modes is promising

• Question: When to switch in power-safe mode?

• Problem: Time & energy overhead associated with wakeup;
greedy sleeping is not beneficial (see exercise)

• Scheduling approach

• Question: How to control dynamic voltage scaling?

• More aggressive; stepping up voltage/frequency is easier

• Deadlines usually bound the required speed form below

• Or: Trading off fidelity vs. energy consumption!

• If more energy is available, compute more accurate results

• Example: Polynomial approximation

• Start from high or low exponents depending where the polynomial is
to be evaluated

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

CASE STUDY: TINYOS 56

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

57

Case study embedded OS:
TinyOS & nesC
• TinyOS developed by UC Berkely as runtime environment for

their “motes”

• nesC as adjunct “programming language”

• Goal: Small memory footprint

• Sacrifices made e.g. in ease of use, portability

• Portability somewhat improved in newer version

• Most important design aspects

• Component-based system

• Components interact by exchanging asynchronous events

• Components form a program by wiring them together (akin to
VHDL – hardware description language)

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

58

TinyOS components

• Components
• Frame – state information
• Tasks – normal execution

program
• Command handlers
• Event handlers

• Handlers
• Must run to completion
• Form a component’s interface
• Understand and emits

commands & events

• Hierarchically arranged
• Events pass upward from

hardware to higher-level
components

• Commands are passed
downward

TimerComponent

setRate fire

init start stop fired

Event
handlers

Command
handlers

Frame

Tasks

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

59

Handlers versus tasks

• Command handlers and events must run to completion

• Must not wait an indeterminate amount of time

• Only a request to perform some action

• Tasks, on the other hand, can perform arbitrary, long
computation

• Also have to be run to completion since no non-cooperative
multi-tasking is implemented

• But can be interrupted by handlers

 ! No need for stack management, tasks are atomic with respect to
each other

 Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

60

Split-phase programming

• Handler/task characteristics and separation has consequences
on programming model
• How to implement a blocking call to another component?

• Example: Order another component to send a packet

• Blocking function calls are not an option

 ! Split-phase programming
• First phase: Issue the command to another component

• Receiving command handler will only receive the command, post it
to a task for actual execution and returns immediately

• Returning from a command invocation does not mean that the
command has been executed!

• Second phase: Invoked component notifies invoker by event that
command has been executed

• Consequences e.g. for buffer handling
• Buffers can only be freed when completion event is received

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

61

TimerComponent

start stop fired

Timer

init

StdCtrl

setRate fire

Clock

Structuring commands/events
into interfaces
• Many commands/events can add up

• nesC solution: Structure corresponding commands/events
into interface types

• Example: Structure timer into three interfaces

• StdCtrl

• Timer

• Clock

 Build configurations by
wiring together
corresponding interfaces

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

62

CompleteTimer

TimerComponent

Timer StdCtrl

Clock

HWClock

Clock

Timer StdCtrl

Building components out of
simpler ones

• Wire together
components to form
more complex
components out of
simpler ones

• New interfaces for the
complex component

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

63

Defining modules and
components in nesC

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

64

Wiring components to form a
configuration

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

65

Summary

• For WSN, the need to build cheap, low-energy, (small) devices
has various consequences for system design

• Radio frontends and controllers are much simpler than in
conventional mobile networks

• Energy supply and scavenging are still (and for the foreseeable
future) a premium resource

• Power management (switching off or throttling down devices)
crucial

• Unique programming challenges of embedded systems

• Concurrency without support, protection

• De facto standard: TinyOS Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

• For more details, refer to:

• Chapter 2, H. Karl and A. Willig, Protocols and Architectures for
Wireless Sensor Networks, Wiley 2005.

• The lecture is available online at:

• http://bu.edu.eg/staff/ahmad.elbanna-courses/12189

• For inquires, send to:

• ahmad.elbanna@feng.bu.edu.eg

66

Se
ns

or
s N

/w
, L

ec
#2

 , S
pr

in
g 2

01
5

©
 A

hm
ad

 E
l-B

an
na

https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
mailto:ahmad.elbanna@feng.bu.edu.eg

