BENHA UNIVERSITY
FACULTY OF ENGINEERING AT SHOUBRA

ECE-508
Sensor Networks

Lecture #2
Single Node Architecture

Instructor:
Dr. Ahmad El-Banna

40)
(o
(o
40)
o)
L
-
40)
=
-
<C
©

SPRING 2015

Agenda

. Sensor node architecture ‘

Energy supply and consumption ‘

. Runtime environments for sensor nodes ‘
. Case study: TinyOS ‘

40)
e
e
Y
X
0
o)
£
<
©
(@)
Y—
o
N
&0
§=
~
QL
99
N
Nuy
Q
Q
—
2
Z
%
—
©)
%)
<
(D)
90

Goals of the chapter

hmad El»-Banna

Survey the main components of the composition of a node for
a wireless sensor network

* Controller, radio modem, sensors, batteries

Understand energy consumption aspects for these
components

* Putting into perspective different operational modes and what
different energy/power consumption means for protocol design

Operating system support for sensor nodes

Some example nodes

©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
2
Z
0]
&
O
p]
=
O
A

Ahmad El»-Earma

SENSOR NODE ARCHITECTURE

©)
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

Sensor node architecture

hmad E_Lbarma

* Main components of a WSN node

Controller
* Communication device(s)

Sensors/actuators

Memory

Power supply

Field Aggregation Node

Memory

Communication Sensor(s)/
: Controller
device actuator(s)

©)
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

Power supply

Ad hoc node architecture

Al‘lmad E_Lbarma

* Core: essentially the same

* But: Much more additional equipment
* Hard disk, display, keyboard, voice interface, camera, ...

* Essentially: a laptop-class device

©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

Controller

* Main options:

Microcontroller — general purpose processor, optimized for
embedded applications, low power consumption

DSPs — optimized for signal processing tasks, not suitable here

FPGAs — may be good for testing

ASICs — only when peak performance is needed, no flexibility

* Example microcontrollers

* Texas Instruments MSP430

* 16-bit RISC core, up to 4 MHz, versions with 2-10 kbytes RAM,
several DACs, RT clock, prices start at 0.49 USS

* Atmel ATMega
* 8-bit controller, larger memory than MSP430, slower

Al‘lmad ELBanna

©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
2
Z
0]
&
O
p]
=
O
A

Microcontrollers!

* A microcontroller (sometimes abbreviated HC, uC or
MCU) is a small computer on a single integrated circuit

Ahma& E_Lbanna

containing a processor core, memory, and
programmable input/output peripherals.

* It can only perform simple /specific tasks.

* A microcontroller is often described as a ‘computer-on-a-
chip’.

©)
1)
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

http://upload.wikimedia.org/wikipedia/commons/c/c7/153056995_5ef8b01016_o.jpg

Microcomputer System and Microcontroller
based System

Ahma& E_Lbanna

" RAM
CPU

ROM

¥
5

peripherals +

Clock

Figure 1: Basic building blocks of a computer

F

peripherals Microcontroller

F Y

Clock

©)
1)
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

Figure 2: A microcontroller based system

Microcontrollers..

* Microcontrollers are purchased ‘blank’ and then programmed
with a specific control program.

* Once programmed, the microcontroller is build into a product
to make the product more intelligent and easier to use.
* A designer will use a Microcontroller to:
* Gather input from various sensors
* Process this input into a set of actions

* Use the output mechanisms on the microcontroller to do

something useful. INPUT PROCESS OUTPUT

@ (microphone }—»
o e)

spe sk er

©
c
c
a
-
0
©
=
<
©)
1)
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

-
o
|

Q

tilt switch —p—
@ [E-mmiuh;—-—

|

Microcontroller Packaging and
Appearance

@
=
S
a
-
e
@
£
<
Q
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

From left to right: PIC 12F508, PIC 16F84A, PIC
16C72, Motorola 68HC0O5B16, PIC 16F877,
Motorola 68000

M
-
" C
|
Features Example: PIC 16F877 H
—
Key Features PIC16F877 _Lél
@
MAX Operating Frequency 20MHz E
FLASH Program Memory <]:
(14-bit words) LS %
—{
Data Memory (bytes) 368 g)]
EEPROM Data Memory (bytes) 256 %0
RAO-5 (6) g
RBO-7 (8) w
RCO-7 (8) :
I/O Ports RDO-7 (8) %1:
REO-2 (3) 8
—
Timers 3 E
Z
ccp (Capture/Compare/PWM) 2 <
O
Serial Communications MSSP, USART %
95!
Parallel Communications PSP
10-bit Analog-to-Digital Module 8 Channels J
Instruction Set 35 Instructions
Pins (DIP) 40 Pins

Communication device

* Which transmission medium?
* Electromagnetic at radio frequencies?
* Electromagnetic, light?
* Ultrasound?

* Radio transceivers transmit a bit- or byte stream as radio
wave

* Receive it, convert it back into bit-/byte stream

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Transceiver characteristics

* Capabilities

Interface: bit, byte, packet level?

Supported frequency range?

* Typically, somewhere in 433 MHz —
2.4 GHz, ISM band

Multiple channels?
Data rates?
Range?

* Energy characteristics

Power consumption to send/receive
data?

Time and energy consumption to
change between different states?

Transmission power control?

Power efficiency (which percentage
of consumed power is radiated?)

* Radio performance

Modulation? (ASK, FSK, ...?)
Noise figure? NF = SNR,/SNR,
Gain? (signal amplification)
Receiver sensitivity? (minimum S
to achieve a given E_/N,)

Blocking performance (achieved
BER in presence of frequency-
offset interferer)

Out of band emissions

Carrier sensing & RSSI
characteristics

Frequency stability (e.g., towards
temperature changes)

Voltage range

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Transceilver states

* Transceivers can be put into different operational states,
typically:
* Transmit
* Receive

* Idle — ready to receive, but not doing so

* Some functions in hardware can be switched off, reducing energy
consumption a little

» Sleep — significant parts of the transceiver are switched off

* Not able to immediately receive something

* Recovery time and startup energy to leave sleep state can be
significant

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Research issue: Wakeup receivers — can be woken via radio
when in sleep state (seeming contradiction!)

|

Homework: Summarize a paper related to Wakeup receivers!
S15PG_SN_UrName_ASS02

Example radio transceivers

e Chipcon CC 2400

* Almost boundless variety available

Some examples
* RFM TR1000 family

916 or 868 MHz

400 kHz bandwidth

Up to 115,2 kbps

On/off keying or ASK

Dynamically tuneable output power
Maximum power about 1.4 mW
Low power consumption

* Chipcon CC1000

Range 300 to 1000 MHz,
programmable in 250 Hz steps

FSK modulation
Provides RSSI

Implements 802.15.4
2.4 GHz, DSSS modem
250 kbps

Higher power consumption than
above transceivers

* Infineon TDA 525x family

E.g., 5250: 868 MHz

ASK or FSK modulation

RSSI, highly efficient power
amplifier

Intelligent power down, “self-
polling” mechanism

Excellent blocking performance

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Example radio transceivers for
ad hoc networks

* Ad hoc networks: Usually, higher data rates are required
* Typical: IEEE 802.11 b/g/a is considered

Up to 54 MBit/s

Relatively long distance (100s of meters possible, typical 10s of
meters at higher data rates)

Works reasonably well (but certainly not perfect) in mobile
environments

Problem: expensive equipment, quite power hungry

|

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Wakeup receivers

* Major energy problem: RECEIVING

* Idling and being ready to receive consumes considerable amounts
of power

* When to switch on a receiver is not clear
* Contention-based MAC protocols: Receiver is always on
 TDMA-based MAC protocols: Synchronization overhead, inflexible

* Desirable: Receiver that can (only) check for incoming
messages

* When signal detected, wake up main receiver for actual reception
* |deally: Wakeup receiver can already process simple addresses
* Not clear whether they can be actually built, however

¥
>

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Computer Process Control System

* To implement process control, the computer must collect data and
transmit signals to the production process.
* Components required to implement the interface:
* Sensors to measure continuous and discrete process variables
* Actuators to drive continuous and discrete process parameters
* Devices for ADC and DAC
* 1/0 devices for discrete data

DITEEPIN

Parameters

Actuators
N

DAC

Continuous and Discrete

/

Output Devices

Computer/
Controller

Contlnuous and Discrete
Varlables

Sensors

ADC

Input Devices

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Sensors

Stimulus (s) Signal (S)

Physical
Medium

Sensing .| Conditioning] | Target
Element “| Handling

l

Temperature Resistance Voltage Information

* Asensor is a transducer that converts a physical stimulus
from one form into a more useful form to measure the
stimulus.

* Two basic categories:

1. Analog
2. Discrete
. Binary
. Digital (e.g., pulse counter)

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Sensors..

N

* Any energy radiated? Passive vs. active sensors

* Main categories

Sense of direction? Omidirectional?

Passive, omnidirectional
* Examples: light, thermometer, microphones, hygrometer, ...

Passive, narrow-beam
* Example: Camera

Active sensors
* Example: Radar

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Important parameter: Area of coverage

|

* Which region is adequately covered by a given sensor?

http://www.mindsensors.com/index.php?module=pagemaster&PAGE_user_op=view_page&PAGE_id=78
http://images.google.com/imgres?imgurl=http://nxtasy.org/wp-content/uploads/2006/08/pressure_sensor.gif&imgrefurl=http://nxtasy.org/2006/08/24/pneumatic-pressure-for-nxt/&usg=__I8sfbTT0k7KuFGVxEqo869Tz1y0=&h=305&w=377&sz=29&hl=en&start=3&um=1&tbnid=0KJwhisfi6oBkM:&tbnh=99&tbnw=122&prev=/images?q=pressure+sensor&hl=en&rls=com.microsoft:en-ie:IE-SearchBox&rlz=1I7GGLR_en&sa=N&um=1

Actuators

* Actuators are hardware devices that convert a controller
command signal into a change in a physical parameter

* The change is usually mechanical (e.g., position or velocity)

* An actuator is also a transducer because it changes one type
of physical quantity into some alternative form

* An actuator is usually activated by a low-level command
signal, so an amplifier may be required to provide sufficient
power to drive the actuator

Mechanism
Logical _ :
Signal Signal Processing Electric Hydraulic) :
& Amplification N Pneumatic S Final Actuation
5 Element

Actuator
Sensor

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Types of Actuators

1. Electrical actuators

* Electric motors
* DCservomotors
* ACmotors
* Stepper motors

* Solenoids
2. Hydraulic actuators

* Use hydraulic fluid to amplify the controller
command signal

3. Pneumatic actuators

* Use compressed air as the driving force

Sensors N/w, Lec#2 , Spring 2015 © Ahmad [T -Panna

http://images.google.ie/imgres?imgurl=http://www.fwmurphy.co.uk/images/RP23xx_solenoid_medres.jpg&imgrefurl=http://www.fwmurphy.co.uk/products/engine_controls/engmot_rp2300.htm&usg=__UdBA_StSqZ4oIbijTPS3RMoLaVA=&h=607&w=800&sz=92&hl=en&start=5&tbnid=7loeepr6ovfJLM:&tbnh=109&tbnw=143&prev=/images?q=solenoid&gbv=2&hl=en

Analog-to-Digital Conversion
(ADC)

Sampling — converts the continuous signal into a series of discrete
analog signals at periodic intervals

* Quantization — each discrete analog is converted into one of a
finite number of (previously defined) discrete amplitude levels

* Encoding — discrete amplitude levels are converted into digital
code

Variable Analogue Signal

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

v

Hardware Devices in
Analog-to-Digital Conversion

>>>>\ ANVRNNVRNNRNN \>>>>
Transformation Process)
L S S S S

Continuous
Variable

V
Sensors
& Transducer

Multiplexer

y

Amplifer Signal

Digital Analog <— Conditioner
Computer Digital 4 <

Converter e
< Other Signals

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

",
J - N 2
£ /s
N
—/

Features of an ADC

» Sampling rate — rate at which continuous analog signal is
polled e.g. 1000 samples/sec

* Quantization — divide analog signal into discrete levels N = 2"
* where N, = quantisation levels; and n is the number of bits.
* Resolution — depends on number of quantization levels
L L
R = —
TN -1 271

* where R, is the resolution of the ADC; L is the full-scale range of
the ADC

* Conversion time — how long it takes to convert the sampled
signal to digital code

* Conversion method — means by which analog signal is
encoded into digital equivalent

* Example — Successive approximation method & Flash

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

¥
>

40)
o
c
s
Flash ADC L
5
=
Vi '<J:J:
. Op-amp
* The simultaneous, or flash,) g‘*‘ comparators ®)
method of A/D conversion (analog) >— e
—{
uses parallel comparators to . <
. . R
compare the linear input % > 0
signal with various reference . =
Tiority Q,
voltages developed by a e h encoder 7
. . (7 -
voltage divider. > © N
 When the input voltage R (5) Dy | Q
“—\ (4 Il Binary 3
exceeds the reference voltage - & Dy 2 output E
for a given comparator, a high . L; >
level is produced on that } (0) %
comparator’s output. . = |] %
Enable CQD)
= : input
—>2"- 1 comparators are required for : J
conversion to an n-digit binary number. —>

DAC

* Convert digital values into continuous analogue signal

* Decoding digital value to an analogue value at discrete moments
in time based on value within register

E =E_ {0.581 +0.25B, +---+(2") Bn}

Where E, is output voltage; E . is reference voltage; B, is status of
successive bits in the binary register

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

DAC Examples

* Scaling Adder as a four-digit DAC DAY 3R

Ho—3

L 4R W
| o=+V/8R Vout(D0)=_Rf ly I8 2 ‘

|,=+V/4R Voutpn)="Re |1 ‘o

,_..-O—w'u——ﬁ Your
l,=+V/2R Vour(p2) = Re | t 2

4=
l,=+V/R Vout(D3)=_Rf l5 R
1ohe |

* AnR/2R ladder DAC

Inputs

Y

=
o D, Q0 0, @ Dy

R, Rﬁ Rﬁ Ry
2R 2R 2R 2R
REI

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

40)
e
e
Y
X
0
o)
£
<
©
(@)
Y—
o
N
o0
§=
~
QL
99
N
Nuy
Q
Q
—
2
Z
%
—
©)
%)
<
(D)
90

ENERGY SUPPLY AND CONSUMPTION

PR)
o, SR
el S 1/
k L
|

Energy supply of
mobile/sensor nodes

* Goal: provide as much energy as possible at smallest
cost/volume/weight/recharge time/longevity

* In WSN, recharging may or may not be an option
* Options
* Primary batteries — not rechargeable

* Secondary batteries — rechargeable, only makes sense in combination
with some form of energy harvesting

* Requirements include
* Low self-discharge
* Long shelf live
* Capacity under load
* Efficient recharging at low current
* Good relaxation properties (seeming self-recharging)
* Voltage stability (to avoid DC-DC conversion)

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Battery examples

* Energy per volume (Joule per cubic centimeter):

Primary batteries

Chemistry Zinc-air Lithium Alkaline

Energy (J/cm3) | 3780 2880 1200
Secondary batteries

Chemistry Lithium NiMHd NiCd

Energy (J/cm?3) | 1080 860 650

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Energy Scavenging

* How to recharge a battery?
* A laptop: easy, plug into wall socket in the evening
* A sensor node? — Try to scavenge energy from environment

* Ambient energy sources
* Light ! solar cells — between 10 pyW/cm? and 15 mW/cm?
* Temperature gradients — 80 u W/cm? @ 1V from 5K difference
* Vibrations — between 0.1 and 10000 pn W/cm?3

* Pressure variation (piezo-electric) — 330 u W/cm? from the heel of a
shoe

* Air/liquid flow (MEMS gas turbines)

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

/ w
—

Energy scavenging — overview

Energy source

Energy density

Batteries (zinc-air)
Batteries (rechargable lithium)

1050 — 1560 mWh/cm?
300mWh/cm? (at 3 -4V)

Energy source

Power density

Solar (outdoors)
Solar (indoors)

Vibrations
Acoustic noise

Passive human-powered systems
Nuclear reaction

15mW /cm? (direct sun)
0.15mW /cm? (cloudy day)
0.006 mW/cm? (standard office desk)
0.57 mW /cm? (< 60 W desk lamp)
0.01 —=0.1mW/cm?
3-107°mW /cm? at 75 Db
9,6 -10~*mW/cm? at 100 Db
1.8 mW (shoe inserts)
80 mW /cm?, 10 mWh/cm?

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Energy Consumption

A “back of the envelope” estimation

Number of instructions

* Energy per instruction: 1 nJ

* Small battery (“smart dust”): 1J=1 Ws
* Corresponds: 10° instructions!

Lifetime
* Or: Require a single day operational lifetime = 24*60*60 =86400 s
* 1 Ws /86400s ¥4 11.5 uW as max. sustained power consumption!

Not feasible!

|

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Multiple power consumption
modes

* Way out: Do not run sensor node at full operation all the time
* If nothing to do, switch to power safe mode
* Question: When to throttle down? How to wake up again?

* Typical modes
* Controller: Active, idle, sleep
* Radio mode: Turn on/off transmitter/receiver, both

* Multiple modes possible, “deeper” sleep modes
* Strongly depends on hardware

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* TI MSP 430, e.g.: four different sleep modes
* Atmel ATMega: six different modes

i ' (@)}
—

Some energy consumption
figures

* Microcontroller

* TIMSP 430 (@ 1 MHz, 3V):

* Fully operation 1.2 mW

* Deepest sleep mode 0.3 uW — only woken up by external interrupts
(not even timer is running any more)

* Atmel ATMega
* Operational mode: 15 mW active, 6 mW idle
* Sleep mode: 75 uW

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Switching between modes

* Simplest idea: Greedily switch to lower mode whenever
possible

* Problem: Time and power consumption required to reach
higher modes not negligible

* Introduces overhead
* Switching only pays off if E__,.4 > E

overhead
* Example:
Event-triggered
wake up from ‘
sleep mode Pactive

E

overhead

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Scheduling problem
with uncertainty Pleep
(exercise)

|

Alternative: Dynamic voltage scaling

* Switching modes complicated by uncertainty how long a sleep
time is available

* Alternative: Low supply voltage & clock
* Dynamic voltage scaling (DVS)

40)
<
c
Y
X
0
o)
£
<
©
(@)
Y—
o
N
&0
§=
~
QL
99
N
Nuy
Q
Q
—
2
Z
%
—
©)
%)
<
(D)
90

* Rationale:
* Power consumption P g
depends on §
* Clock frequency 3
* Square of supply voltage §
- PIfW2 (i
* Lower clock allows
lower supply voltage Clock (MHz) 'ws_gm

* Easy to switch to higher clock
* But: execution takes longer

\
LY
N

Memory power consumption

* Crucial part: FLASH memory
* Power for RAM almost negligible

* FLASH writing/erasing is expensive
* Example: FLASH on Mica motes
* Reading: ¥4 1.1 nAh per byte
* Writing: ¥4 83.3 nAh per byte

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Transmitter power/energy
consumption for n bits

* Amplifier power: P, = 0lan + Bamp Pix
* P, radiated power
* Olamps Bamp CONstants depending on model
* Highest efficiency (n = P,, / P,,,,) at maximum output power
* In addition: transmitter electronics needs power P

* Time to transmit n bits:n/(R*R)
code

* R nomial data rate, Rcode coding rate

* To leave sleep mode

average power P
g p start

txElec

* Time T,

IE =T P +n/(R*R

tx start start code

) (PthIec + a’amp + ﬁamp Ptx)

* Simplification: Modulation not considered

I
MY

|

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Receiver power/energy
consumption for n bits

* Receiver also has startup costs

°* TimeT

«arty Average power P

start

* Time for n bits is the samen /(R *R

)

code

* Receiver electronics needs P, ..

* Plus: energy to decode n bits E_ g

'E, =T P +n / (R * Rcode) PerIec + IEdecBits(R)

X start start

|

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

@
C
s
Some Transceiver Numbers L
—Q
o)
-
Symbol Description Example transceiver <C
HAMPS-1 WINS MEDUSA-II ©
[559] [670] [670] o
O
Qamp Eq.(2.4) 174 mW N/A N/A I
Bamp Eq.(2.4) 5.0 8.9 7.43 =
e Amplifier pwr. 179 -674mW N/A N/A 2
Prilec Reception pwr. 279mW 368.3mW 12.48 mW o
Pixiaie Receive idle N/A 344.2 mW 12.34 mW 3
TR Startup pwr. 58.7mW N/A N/A ;
Pixglec Transmit pwr. 151 mW ~ 386 mW 11.61 mW >
R Transmission 1 Mbps 100 kbps OOK 30 kbps %
rate ASK 1152 kbps 2
Toare Startup time 466 ps N/A N/A A

)

Comparison: GSM base station

power consumption

. Heat 602W Heat 1920W Heat 360W
* Overview p p p
I, ’, ,l
2 DC . K
ower
AC power L P TRX L RFpower TOC RF
3200w 2400W 480W
3802w PS 48V 120W
: ; +— TRXs|—— ACE :
849% Combining
: Central | .-=7 Heat 800W
CE equipm.
BTS 800W Total Heat
3682w
* Details ACPower Rack | com-
supply cabling 306W mon
220V -48V -48V
: 85% I 99% : . .
3802W 3232w 3200W : ng‘lr_‘rfg (No active cooling)
|
PAs consume 2400W T 500w
dominant part of power C .
(12*140W)/2400W=70% X)— 12 transceivers
200W + _
: idle
. . 140W T s0W
* (just to put things usaiepacficiency Converter [—
. . 40W/140W=28% .agv/+o7v | 8%
into perspective) tong |
Overall efficiency efficiency 75% Combiner Diplexer
* = 0,
(12°10W)/3802W=3.1% | activity Toc
47% |
' 15W 10w

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Controlling Transceivers

* Similar to controller, low duty cycle is necessary

* Easy to do for transmitter — similar problem to controller: when is
it worthwhile to switch off

 Difficult for receiver: Not only time when to wake up not known,
it also depends on remote partners

I Dependence between MAC protocols and power consumption is
strong!

* Only limited applicability of techniques analogue to DVS

* Dynamic Modulation Scaling (DSM): Switch to modulation best
suited to communication — depends on channel gain

* Dynamic Coding Scaling — vary coding rate according to channel
gain
* Combinations

¥
>

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Computation vs.
communication energy cost

* Tradeoff?

* Directly comparing computation/communication energy cost not
possible

e But: put them into perspective!

)

* Energy ratio of “sending one bit” vs. “computing one instruction”:
Anything between 220 and 2900 in the literature

* To communicate (send & receive) one kilobyte
= computing three million instructions!

* Hence: try to compute instead of communicate whenever
possible

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Key technique in WSN — in-network processing!
* Exploit compression schemes, intelligent coding schemes, ...

|

©
o
(o
a
~L
e
@
£
<
©)
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

RUNTIME ENVIRONMENTS FOR
SENSOR NODES

PR)
. WA
el S 1/
k U
—/

Operating system challenges in
WSN

* Usual operating system goals
* Make access to device resources abstract (virtualization)
* Protect resources from concurrent access

* Usual means

* Protected operation modes of the CPU — hardware access only in
these modes

* Process with separate address spaces
* Support by a memory management unit

* Problem: These are not available in microcontrollers

* No separate protection modes, no memory management unit
* Would make devices more expensive, more power-hungry

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

1 ?777?

)

Operating system challenges in
WSN

* Possible options
* Try to implement “as close to an operating system” on WSN
nodes

* In particular, try to provide a known programming interface
* Namely: support for processes!
* Sacrifice protection of different processes from each other
I Possible, but relatively high overhead

* Do (more or less) away with operating system
* After all, there is only a single “application” running on a WSN node
* No need to protect malicious software parts from each other
* Direct hardware control by application might improve efficiency

* Currently popular verdict: no OS, just a simple run-time
environment
* Enough to abstract away hardware access details
* Biggest impact: Unusual programming model

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

v R

Main issue: How to support

concurrency

* Simplest option: No concurrency,
sequential processing of tasks

* Not satisfactory: Risk of missing data (e.g.,
from transceiver) when processing data,
etc.

I Interrupts/asynchronous operation has to
be supported

* Why concurrency is needed

* Sensor node’s CPU has to service the radio
modem, the actual sensors, perform
computation for application, execute
communication protocol software, etc.

Poll sensor

A 4

Process
sensor
data

A 4

Poll transceiver

A 4

Process received
packet

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Traditional concurrency:
Processes

* Traditional OS: processes/threads

* Based on interrupts, context
switching

* But: not available — memory
overhead, execution overhead

Handle sensor Handle packet
process process

* But: concurrency mismatch g 1

* One process per protocol entails !
too many context SWitches .

* Many tasks in WSN small with
respect to context switching
overhead

* And: protection between
processes not needed in WSN

* Only one application anyway

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

OS-mediated
process switching

)

Event-based concurrency

* Alternative: Switch to event-based programming model
* Perform regular processing or be idle
e React to events when they happen immediately
* Basically: interrupt handler
* Problem: must not remain in interrupt handler too long
* Danger of loosing events
* Only save data, post information that event has happened, then return
I Run-to-completion principle
* Two contexts: one for handlers, one for regular execution
Radio
Sensor event
event g
/> | lde/Requiar| | Radio event handler

ST

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

v R

handler

Components instead of
processes

* Need an abstraction to group functionality
* Replacing “processes” for this purpose
* E.g.:individual functions of a networking protocol

* One option: Components
* Here: In the sense of TinyOS
» Typically fulfill only a single, well-defined function

* Main difference to processes:
* Component does not have an execution

* Components access same address space, no protection against each
other

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* NOT to be confused with component-based programming!

/ w
—

API to an event-based protocol
stack

* Usual networking API: sockets
* Issue: blocking calls to receive data
* |ll-matched to event-based OS

* Also: networking semantics in WSNs not necessarily well matched
to/by socket semantics

* APl is therefore also event-based

* E.g.: Tell some component that some other component wants to
be informed if and when data has arrived

* Component will be posted an event once this condition is met

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Details: see TinyOS example discussion below

Y)] w
4 &
—

Dynamic power management

Exploiting multiple operation modes is promising

Question: When to switch in power-safe mode?

* Problem: Time & energy overhead associated with wakeup;
greedy sleeping is not beneficial (see exercise)

* Scheduling approach

Question: How to control dynamic voltage scaling?
* More aggressive; stepping up voltage/frequency is easier
* Deadlines usually bound the required speed form below

Or: Trading off fidelity vs. energy consumption!
* If more energy is available, compute more accurate results

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

* Example: Polynomial approximation

* Start from high or low exponents depending where the polynomial is
to be evaluated

¥
>

S
>
=
T
>
-
—
T
N
]
N
<
-

Case study embedded OS:
TinyOS & nesC

TinyOS developed by UC Berkely as runtime environment for
their “motes”

nesC as adjunct “programming language”

Goal: Small memory footprint
 Sacrifices made e.g. in ease of use, portability
* Portability somewhat improved in newer version

Most important design aspects
* Component-based system
* Components interact by exchanging asynchronous events

* Components form a program by wiring them together (akin to
VHDL — hardware description language)

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

§ i ~N
—

TinyOS components

* Components
* Frame — state information

* Tasks — normal execution
program

¢ Command handlers v v v /\

* Event handlers

init start stop fired

* Handlers UEOfT;Tand ‘Frame
¢ Must run to completion CLAICLRS
* Form a component’s interface .
* Understand and emits TimerComponent

commands & events

* Hierarchically arranged - Eda (g S) Event
handlers

* Events pass upward from
hardware to higher-level

components v A

* Commands are passed
downward

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

setRate fire

|

Handlers versus tasks

* Command handlers and events must run to completion
* Must not wait an indeterminate amount of time
* Only a request to perform some action

* Tasks, on the other hand, can perform arbitrary, long
computation

* Also have to be run to completion since no non-cooperative
multi-tasking is implemented

* But can be interrupted by handlers

I No need for stack management, tasks are atomic with respect to
each other

)

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Split-phase programming

* Handler/task characteristics and separation has consequences
on programming model
* How to implement a blocking call to another component?
* Example: Order another component to send a packet
* Blocking function calls are not an option
| Split-phase programming
* First phase: Issue the command to another component

* Receiving command handler will only receive the command, post it
to a task for actual execution and returns immediately

* Returning from a command invocation does not mean that the
command has been executed!

* Second phase: Invoked component notifies invoker by event that
command has been executed

* Conseguences e.g. for buffer handling
* Buffers can only be freed when completion event is received

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

|

Structuring commands/events
into interfaces

Many commands/events can add up

nesC solution: Structure corresponding commands/events
into interface types

Example: Structure timer into three interfaces
e StdCtrl
* Timer init start stop fired

* Clock v v v /\

StdCtrl Timer

Build configurations by

. TimerC t
wiring together imert-omponen

corresponding interfaces Clock

setRate fire

|

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

Building components out of

simpler ones vVVvYVY A

StdCtrl Timer

* Wire together /
components to form 4 4 /<
more complex v

StdCtrl Timer

components out of
simpler ones TimerComponent

* New interfaces for the Clock
complex component

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
X
O
0
=
g
Z
0]
&
O
p]
=
O
A

Clock

HW(Clock

|

CompleteTimer

Defining modules and
components in nesC

interface StdCtrl {
command result_t init();

interface Timer {
command result_t start (char type, uint32_t interval);
command result_t stop ();
event result_t fired();

interface Clock {
command result_t setRate (char interval, char scale);
event result_t fire ();

module TimerComponent
provides {
interface StdCtrl;
interface Timer;
}
uses interface Clock as Clk;

©
o
(o
a
~L
e
@
£
<
©)
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

|

Wiring components to form a
configuration

configuration CompleteTimer {

provides {
interface StdCtrl;
interface Timer;

}

implementation {
components TimerComponent, HWClock;
StdCtrl = TimerComponent.HWClock;
Timer = TimerComponent.Timer;
TimerComponent.Clk = HWClock.Clock;

}

40)
e
e
Y
X
0
o)
£
<
©
(@)
Y—
o
N
o0
§=
~
QL
99
N
Ny
Q
Q
—
2
Z
%
—
©)
%)
<
(D)
90

|

Summary

* For WSN, the need to build cheap, low-energy, (small) devices
has various consequences for system design

* Radio frontends and controllers are much simpler than in
conventional mobile networks

* Energy supply and scavenging are still (and for the foreseeable
future) a premium resource

* Power management (switching off or throttling down devices)
crucial

* Unique programming challenges of embedded systems
 Concurrency without support, protection
* De facto standard: TinyOS

©
c
c
a
X
0
©
=
<
©)
()
—l
)
N
o0
=
S
Q
5
N
3t
O
0
=
g
Z
0]
&
O
p]
=
O
A

v R

* For more details, refer to:

* Chapter 2, H. Karl and A. Willig, Protocols and Architectures for
Wireless Sensor Networks, Wiley 2005.

* The lecture is available online at:
e http://bu.edu.eg/staff/ahmad.elbanna-courses/12189

* For inquires, send to:
* ahmad.elbanna@feng.bu.edu.eg

©
o
(o
a
~L
e
@
£
<
©)
o
—
)
o\
o0
=
~
o
99
N
Ry
O]
Q
—
2
Z
0]
=~
O
p]
=
O
99

|

https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
https://speakerdeck.com/ahmad_elbanna
mailto:ahmad.elbanna@feng.bu.edu.eg

